PVP 17

Code: 17EEPC1T2
I M.Tech - I Semester-Supplementary Examinations December 2018

MODERN CONTROL THEORY (POWER SYSTEM \& CONTROL)

Duration: 3 hours
Max. Marks: 60
Answer the following questions.

1. a) Give the merits of state variable analysis and formulation of state model.

5 M
b) Find the Eigen values and Eigen vectors of the matrix

$$
A=\left[\begin{array}{ccc}
0 & 0 & 10 \\
0 & 1 & 52 \\
-3 & -7 & 4
\end{array}\right]
$$

2. a) Derive the state model for the system whose transfer function is given by

$$
\frac{Y(s)}{U(s)}=\frac{3 s^{2}+7 s+15}{s^{3}+7 s^{2}+14 s+8}
$$

b) Develop the state model for a system characterized by the differential equation $\dddot{y}+7 \ddot{y}+5 \dot{y}+9 y+u=0 \quad 8 \mathrm{M}$
3. a) Explain controllability and observability of a linear system using Kalman's test.
b) Obtain the transfer function from the state model. 8 M

$$
\dot{X}=\left[\begin{array}{ll}
-3 & 1 \\
-2 & 0
\end{array}\right] X+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u ; Y=\left[\begin{array}{ll}
1 & 0
\end{array}\right] X
$$

OR

4. a) Obtain state space representation for the system described by differential equation. Assume zero initial conditions. Determine State transition matrix also for this.

$$
\frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}-2 y=u(t) e^{-t}
$$

Where $\mathrm{y}(0)=0, \mathrm{u}(\mathrm{t})=$ unit step input.
b) Derive the solution of the non-homogeneous state equation.
5. What is phase plane, phase trajectory and phase portrait? Draw and explain how to determine the stable and unstable limit cycles using phase portrait?

OR

6. a) Derive the describing function for relay with deadzone non-linearity.
b) State and explain Lyapunov's stability theorem.
7. Explain in detail the fundamental theorem of the calculus of variations.
15 M
OR
8. What is optimal control? Explain how to formulate the optimal control problem?
15 M
